An intelligent approach for variable size segmentation of non-stationary signals

نویسندگان

  • Hamed Azami
  • Hamid Hassanpour
  • Javier Escudero
  • Saeid Sanei
چکیده

In numerous signal processing applications, non-stationary signals should be segmented to piece-wise stationary epochs before being further analyzed. In this article, an enhanced segmentation method based on fractal dimension (FD) and evolutionary algorithms (EAs) for non-stationary signals, such as electroencephalogram (EEG), magnetoencephalogram (MEG) and electromyogram (EMG), is proposed. In the proposed approach, discrete wavelet transform (DWT) decomposes the signal into orthonormal time series with different frequency bands. Then, the FD of the decomposed signal is calculated within two sliding windows. The accuracy of the segmentation method depends on these parameters of FD. In this study, four EAs are used to increase the accuracy of segmentation method and choose acceptable parameters of the FD. These include particle swarm optimization (PSO), new PSO (NPSO), PSO with mutation, and bee colony optimization (BCO). The suggested methods are compared with other most popular approaches (improved nonlinear energy operator (INLEO), wavelet generalized likelihood ratio (WGLR), and Varri's method) using synthetic signals, real EEG data, and the difference in the received photons of galactic objects. The results demonstrate the absolute superiority of the suggested approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Adaptive Segmentation Method Using Fractal Dimension and Wavelet Transform

In analyzing a signal, especially a non-stationary signal, it is often necessary the desired signal to be segmented into small epochs. Segmentation can be performed by splitting the signal at time instances where signal amplitude or frequency change. In this paper, the signal is initially decomposed into signals with different frequency bands using wavelet transform. Then, fractal dimension of ...

متن کامل

An Adaptive Segmentation Method Using Fractal Dimension and Wavelet Transform

In analyzing a signal, especially a non-stationary signal, it is often necessary the desired signal to be segmented into small epochs. Segmentation can be performed by splitting the signal at time instances where signal amplitude or frequency change. In this paper, the signal is initially decomposed into signals with different frequency bands using wavelet transform. Then, fractal dimension of ...

متن کامل

A Time-Frequency approach for EEG signal segmentation

The record of human brain neural activities, namely electroencephalogram (EEG), is generally known as a non-stationary and nonlinear signal. In many applications, it is useful to divide the EEGs into segments within which the signals can be considered stationary. Combination of empirical mode decomposition (EMD) and Hilbert transform, called Hilbert-Huang transform (HHT), is a new and powerful ...

متن کامل

An Improved Automatic EEG Signal Segmentation Method based on Generalized Likelihood Ratio

It is often needed to label electroencephalogram (EEG) signals by segments of similar characteristics that are particularly meaningful to clinicians and for assessment by neurophysiologists. Within each segment, the signals are considered statistically stationary, usually with similar characteristics such as amplitude and/or frequency. In order to detect the segments boundaries of a signal, we ...

متن کامل

Adaptive Segmentation with Optimal Window Length Scheme using Fractal Dimension and Wavelet Transform

In many signal processing applications, such as EEG analysis, the non-stationary signal is often required to be segmented into small epochs. This is accomplished by drawing the boundaries of signal at time instances where its statistical characteristics, such as amplitude and/or frequency, change. In the proposed method, the original signal is initially decomposed into signals with different fr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015